FORMA TU COLECCION VIRTUAL

DIVIERTETE OBSERVANDO IMAGENES DE MONEDAS Y BILETES ENCONTRADAS EN LA WEB E INVESTIGA SOBRE COMO SE RELACIONAN CON NUESTRA HISTORIA Y CON LAS MATEMATICAS.

FORMA TU COLECCION VIRTUAL BUSCANDO IMAGENES EN PAGINAS WEB ESPECIALIZADAS EN NUMISMATICA.

CONCEPTO DE FUNCIÓN

Concepto de función:

Si tratáramos hoy de contestar a la difícil pregunta '¿qué son las matemáticas?' muchas veces respondemos algo como 'El estudio de las relaciones entre conjuntos' o 'El estudio de las dependencias entre cantidades variables'.
Si estas afirmaciones son cercanas a la verdad entonces sería lógico sugerir que el concepto de función debe haber aparecido desde las primeras etapas del desarrollo de las matemáticas. Ciertamente, si vemos las matemáticas babilónicas encontramos tablas de cuadrados de los números naturales, cubos de los números naturales y recíprocos de los números naturales.

Si avanzamos hasta las matemáticas griegas entonces llegamos al trabajo de Ptolomeo. Él computó cuerdas de un círculo lo que esencialmente quiere decir que computó funciones trigonométricas.

Galileo estaba empezando a entender el concepto aún con mayor claridad. Sus estudios sobre el movimiento contienen la clara comprensión de una relación entre variables.

Casi al mismo tiempo que Galileo llegaba a estas ideas, Descartes introducía el álgebra a la geometría en La Géometrie (La geometría). Afirma que una curva puede dibujarse al permitir que un línea tome sucesivamente un número infinito de valores distintos. Esto de nuevo lleva el concepto de función a la construcción de una curva ya que Descartes está pensando en términos de la magnitud de una expresión algebraica que toma infinitos valores como en que la magnitud a partir de la cual se compone la expresión, toma un infinito número de valores

En 1755 Euler publicó otro libro muy importante, Institutiones calculi differentialis. En este libro definió una función de manera totalmente general, dando lo que podemos razonablemente afirmar que era una definición verdaderamente moderna de función:
Si algunas cantidades dependen de otras del tal modo que si estas últimas cambian también lo hacen las primeras, entonces las primeras cantidades se llaman funciones de las segundas. Esta definición se aplica de manera más bien amplia e incluye todas las formas en que una cantidad puede ser determinada por otra. Si, por lo tanto, x denota una cantidad variable, entonces todas las cantidades que dependen de x de cualquier modo, o que son determinadas por ella, son llamadas funciones de x.
¿De dónde han tomado el concepto las definiciones más modernas? Goursat, en 1923, dio la definición que aparece en la mayoría de los libros de textos hoy en día:
Se dice que y es una función de x si a cada valor de x le corresponde un valor de y. Esta correspondencia se indica mediante la ecuación y = ƒ(x).

En caso de que ésta no sea lo suficientemente precisa y que involucra conceptos como 'valor' y 'correspondencia', véase la definición dada por Patrick Suples en 1960:
Definición. A es una relación ⇔ (∀x)(x ∈ A ⇒ (∃y)(∃z)(x = (y,z)). Se escribe y A z si (y,z) ∈ A.
Definición. ƒ es una función⇔ ƒ es una relación y (∀x) (∀y) (∀z)(x ƒ y y x ƒ z ⇒ y = z).

… y tu amigo estudiante que concepto puedes construir de función matemática?